All premium Magento themes at magentothemesstore.com!
Detecting catastrophic failures before they happen
Imagine a material that can tell you it will fail before it does. Most ceramic materials suffer brittle fracture, which means that after certain stress load they will simply fail without a pre-deformation as in ductile metals, that can mitigate some of the problems associated with the failure. In this project we are creating smart ceramics that gives an electrical signal before failure. The ceramics are YSZ based nanostructures, with a network of carbon nabotubes and particles to enable the electrical signals. The forseen application is for armors. This work is partially funded by DOE BES and UC Davis.

Capturing Fission Products is not an easy task due to the extreme environments of temperature and radiation the materials face.
This project has the goal of creating new nanoporous materials that are highly effective for sequestration of fission product gases such as such as He, Xe and Kr in scenarios relevant for both reactor fuels and reprocessing operations. These materials must be radiation tolerant and chemically stable at high temperatures in the presence of reactive species, yet specifically tailored to function efficiently with the target atoms. Thi research is funded by NEUP, in a project whose PI is Prof. Pieter Stroeve.
Improving mimpact resistance of polymers by creating a multiscale active damping mechanism
The goal of this project is to bring together researchers with complementary multidisciplinary expertise and common interests, by engineering sustainable nanocomposites, and build up fundamental knowledge that would not be possible without teaming up. We will focus on fiber-reinforced composites based on recycled polypropylene enriched with nanostructures ("multiscale" composites). These nanocomposites will be designed to improve mechanical and electrical properties as well as for self-sensing of their damage modes. The design of these low-weight nanocomposites emerges as a global opportunity for sustainable high performance materials that can be used in efficient transportation. The team is composed by UC Davis, with extensive experience in manufacturing and mechanical behavior of fiber reinforced nanocomposites (V. La Saponara) and in the synthesis and interface properties of nanomaterials (R. Castro), and by Centro de Investigación Científica de Yucatán (Mexico), with extensive experience in nanocomposite manufacturing, self-sensing of damage (F. Avilés) and thermoplastics processing (I. González). This research is supported by UC MEXUS-CONACYT.

Click to check other projects.
1 2

Affiliations

Peter A. Rock Thermochemistry Laboratory Our group is a part of this unique laboratory, check the website!
Chemical Engineering and Materials Science Department.
Visit the new website for more information.

Interesting Links

Materials & You, a program developed with the Yolo County Office of Education
Teaching kids about materials. Click to learn more.
Professor Castro is a scientist with faith. Learn more about Castro's faith and how science can co-exist with God.